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Abstract—Future NASA exploration missions will involve 
teams of humans and robots working together to achieve 
science objectives on lunar and planetary surfaces.  
Members of these teams must be able to communicate with 
each other interactively as they work together in close 
proximity.  However, current operational procedures and 
technologies are based on the assumption that surface 
elements operate in isolation and communicate solely with 
the Earth, either directly or through orbiting relays.  
 
The use of direct wireless communications among local 
surface elements will be necessary to achieve optimal 
communications efficiency.  However, the surface elements 
are mobile and may lose communication with one another, 
due to traveling either out of range or behind an obstruction. 
 This problem can be addressed through the use of a mobile 
ad hoc network routing protocol, allowing nodes unable to 
communicate directly to remain in contact by relaying data 
through one or more intermediate nodes. 
 
To test this method of dynamic surface-to-surface 
communications, we have implemented the Dynamic Source 
Routing (DSR) protocol in a UNIX-based test environment. 
 DSR is an efficient routing protocol that allows 
independent wireless nodes to self-organize into an ad hoc 
network.  To enhance performance, forwarding and routing 
functions are split between kernel and user space, 
respectively.  We have conducted field testing to determine 
the performance and effectiveness of DSR in maintaining 
connectivity among mobile nodes in the presence of 
communications outages caused by distance or obstructions. 
 The results suggest that mobile ad hoc routing is a 
promising basis for communications among surface 
elements. 12 
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1. INTRODUCTION 

NASA surface exploration missions to date have featured 
humans and robots operating essentially independently.  The 
communications requirements for these missions have been 
relatively simple — the surface elements needed simply to 
communicate back to Earth, either directly or via an orbiting 
relay satellite.  In contrast, future NASA surface exploration 
missions will incorporate teams of humans and robots 
working together to achieve science and engineering goals 
on planetary surfaces.  For example, a geologist collecting 
samples on the lunar surface may work with a robotic 
assistant to annotate or analyze those samples [9].   
 
As a result, flexible and dynamic planetary communications 
are critical to the success of NASA’s space exploration 
vision. Flexible on-site surface-to-surface communications 
would enable the planetary in-situ human and robotic teams 
to collaboratively adjust their activities based on unfolding 
situations.  However, the use of surface-to-surface 
communications would represent a fundamental shift in 
communications support for NASA space missions. During 
the lunar missions of the Apollo era, astronaut 
communications and directives were relayed back to Earth.  
As a result, astronaut exploration time was not well utilized.  
 
Today, NASA is moving towards humans controlling 
robotic assets in-situ.  However, based upon today’s 
operations models and technology, communications 
between surface elements would still be relayed via the 
Earth or orbiting platforms, thus introducing long delay. In 
the case of the Spirit and Opportunity rovers from the Mars 
Exploration Rover Mission [4], landed assets are 
communicating via both an orbiting platform, the Mars 
Global Surveyor [5], and NASA’s Deep Space Network 
(DSN) [3] ground terminals.  Due to the large physical 
distances, there is long latency between the landed rovers 
and the Earth based communications assets, measured in 
minutes, as opposed to the milliseconds on typical Earth-
based communications systems.  Similarly, communications 
between the Moon and Earth are measured in seconds.  
Furthermore, communications assets must be scheduled, 
based upon orbital positions, antenna directions and ground 
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station availability.  For instance, if the orbiting platform 
were out of the line of sight, communications would not be 
possible.  In the case of future lunar missions, this could 
prevent timely communications between landed elements 
that are a few meters apart.  NASA’s traditional use of 
scheduled point-to-point downlink of mission data could be 
enhanced with the inclusion of a local dynamic routed 
wireless communications architecture on the planetary 
surface.  
 
As are result, we began exploring mobile ad hoc routing 
protocols, based upon work of the Internet Engineering Task 
Force’s (IETF) Mobile Ad-hoc Networks (MANET) 
Working Group.  Due to the potential of low power and low 
bandwidth mobile nodes on the lunar surface, we studied 
reactive routing protocols, as opposed to the more 
traditional proactive protocols. Since reactive protocols 
initiate routing on an on-demand basis, as opposed to 
sending periodic routing table updates like proactive 
protocols, there is a reduction of routing load [11].  This is 
advantageous in constrained power and bandwidth 
environments. 

2. RELATED WORK 

 
Routing data efficiently in a mobile ad hoc network can be 
challenging, and several protocols have been developed to 
solve this problem.  The MANET working group has 
explored a number of these, including Dynamic Source 
Routing (DSR) [1], Ad Hoc On-demand Distance Vector 
(AODV) [6], Dynamic MANET On-demand (DYMO) 
Routing [7], Dynamic Destination-Sequenced Distance-
Vector (DSDV) Routing [8], Optimized Link State Routing 
(OLSR) [12], and Topology Broadcast based on Reverse-
Path Forwarding (TBRPF) [13]. Of these protocols, 
MANET chose to focus on DSR, AODV, OLSR, and 
TBRPF.  OLSR and TBRPF are proactive protocols and, as 
mentioned above, less desirable for planetary surface 
communications. Of the two reactive protocols, AODV and 
DSR, we ultimately chose to work with DSR because of its 
ability to maintain a routing table with multiple paths.  
Because of the unpredictability of node movements and 
obstructions in the area being explored, path redundancy is a 
critical requirement. 
 
Many of the studies of these protocols are simulation based. 
Furthermore, these simulations focus on the typical 
Department of Defense problem, where there are a large 
number of mobile nodes moving rapidly.  In the case of 
lunar exploration, there will likely be a small number of 
mobile nodes exploring the planetary surface  Also, the 
studies that do involve live tests generally happen in a 
university campus setting, with buildings and vehicles 
serving as the main obstructions.  As a result, we chose to 
implement and validate DSR in an environment that more 
closely resembles actual lunar and planetary surface 
conditions. 

3. DSR PROTOCOL OVERVIEW 

This section provides an overview of the basic DSR 
operations; a more detailed discussion is available in the 
Internet Draft [1].  DSR is an efficient routing protocol that 
allows independent wireless mobile nodes to self-organize 
into an ad hoc network. The protocol specifies two main 
operations, route discovery and route maintenance, which 
allow nodes to learn and track routes to arbitrary 
destinations in the network.  

3.1 Route Discovery 

The operation of the protocol is illustrated in Figure 1.  
Time increases in the downward direction in the figure.  The 
initial phase is route discovery, in which a node S wishing 
to send a packet to a destination node D broadcasts a 
RouteRequest (RREQ) message for D to the network.  This 
message is contained in an IP packet that includes a DSR 

header preceding the transport protocol packet.  The header 
includes the type of message, as well as the path taken by 
the packet so far.  Initially, the path just contains S.  This 
message propagates to the immediate neighbors of S, 
including B. In turn, each neighbor appends itself to the path 
recorded in the header and then propagates the RREQ to 
each of its own neighbors, such as C in the figure.  This 
process repeats until the RREQ reaches D.  D then issues a 
RouteReply (RREP) message, which travels back to S along 
the reverse of the recorded path.  S then caches the route for 
future use, specifying the full route to D in subsequent data 
packets.  

When S receives more than one RREP for a given 
destination, it chooses the first route that it receives in order 
to minimize the time for route discovery to take place.  With 
minor modifications, the implementation can choose a route 
based on other metrics, such as previously observed 
throughput or packet loss rate for each node along the path. 

3.2 Route Maintenance 

Route maintenance is the mechanism by which S detects 
during transmission if its route to D has become invalid, 
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typically due to an intermediate node in the path failing or 
moving out of communication range.  Path validity is 
monitored on a per-hop basis, with each node along the path 
using an acknowledgement mechanism to ensure that a 
packet was received by its downstream neighbor.  This 
acknowledgement mechanism may be provided by the 
underlying layer 2 protocol (such as IEEE 802.11), or else a 
node may infer acknowledgement from overhearing its 
downstream neighbor relay the packet (for example, B 
concludes that C successfully received a packet after 
overhearing C transmit the packet to D).  If neither of these 
mechanisms is available, DSR can rely on its own 
acknowledgement scheme, in which a node sends an 
AcknowledgmentRequest message to its downstream 
neighbor and awaits a corresponding AcknowledgmentReply 
message.   

Regardless of the mechanism used, if a node does not 
receive an acknowledgement from a downstream neighbor, 
it assumes that neighbor is unreachable and marks invalid 
all routes in its cache that contain that neighbor.  The node 
then issues a RouteError (RERR) message to all upstream 
nodes that have recently used the invalidated routes.  The 
upstream nodes can then attempt to use other routes in their 
route caches, or they can invoke route discovery again to 
find new routes that do not include the failed node. 

4. DSR IMPLEMENTATION 

Implementing the dual operations of routing and forwarding 
in a mobile ad-hoc network routing protocol poses 
challenges in most operating systems. Packet forwarding 
refers to the process of sending a packet to the next hop on 
the path toward its destination, as determined by consulting 
a table (the forwarding table). Forwarding is implemented 
inside the kernel to maximize performance. Packet routing 
refers to the process of building the forwarding table, by 
communicating with neighboring nodes to learn enough of 
the network topology to determine the next hop to various 
destinations within the network.  Routing is normally 
implemented in user space as daemon program, to avoid 
burdening the kernel with the overhead of communicating 
with other hosts and computing routes.   
 
DSR and other on-demand routing protocols combine these 
functions, and so pose several implementation challenges 
[2]. One major issue is this intermixing of the forwarding 
and routing functions.  Since these normally take place at 
different layers of the operating system, a choice of how to 
combine them is necessary.   A complete in-kernel 
implementation would minimize expensive copying of 
packets between the kernel and user space, but would 
require heavy modifications to the IP stack and would 
impose the above communication and computation 
overhead on the kernel.  A complete user-space approach is 
much simpler to implement, but forwarding performance 
will suffer because each packet would be copied into user 

space for forwarding. 
 
A second issue is the need for a mechanism to handle 
outstanding packets. Because routes which do not exist a 
priori need to be discovered before packets can be sent to 
the corresponding destination, the outstanding packets must 
be queued while route discovery takes place. 
 
4.1 Implementation Approach 
 
Kawada et al. [2] introduce a split kernel-user design, 
requiring minimal modifications to the kernel source. The 
idea was to keep the forwarding and routing functions in 
their natural domains, while enabling the communication 
between the two functions necessary for the operation of the 
protocol.  Their Linux-based DSR was designed around a 
custom Ad-hoc Support Library (ASL), consisting of a user-
space Routing Daemon and two kernel modules: a DSR-
forwarding-helper and a DSR-maintenance-helper.  This 
design has the advantages of both optimal performance and 
simple implementation. 
 
Because of the advantages of Kawada’s design, we decided 
to use it as a model for our UNIX-based implementation of 
DSR (Figure 2).  We utilized FreeBSD, an operating system 
based on the Berkeley Software Distribution (BSD) version 
of UNIX, running on Intel-based hosts.  Our implementation 
features a user-space daemon (dsrd) and a single kernel 
module (if_dsr.ko), and requires minimal changes to the 
base FreeBSD code.  The dsrd daemon performs the route 
request/maintenance functions, and uses system calls to 
populate the kernel-based forwarding table.  The if_dsr.ko 
module interacts with the IP stack to forward DSR packets. 
 

In the following sections, we will first present the system-
specific implementation details.  Also, we will present the 
algorithms of the Routing Daemon and the kernel module. 
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Figure 2 – DSR Node Structure 
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4.2 Implementation Details 

 
The Dynamic Source Routing (DSR) protocol was 
implemented under FreeBSD 5.x and 6.0 using the dynamic 
kernel linker facility. Software developers utilize kernel 
modules, or KLDs, in order to implement new kernel 
functionality modularly, without needing to of reboot the 
system. Hence through KLDs, functionality can be 
dynamically added and removed while the system is 
running. 
 
The DSR kernel module is implemented as a virtual network 
device driver and operates as follows: 
 
Incoming Packets – The kernel module adds a new protocol 
switch input routine, dsr_input, to the inbound IP stack. The 
existing IP module reads packets from the IP input queue 
(ipintq) as normal. For every packet processed by standard 
system call ip_input, when the protocol field in the header 
indicates a DSR packet, the packet is passed to the dsr_input 
function.  dsr_input processes DSR packets according to 
DSR specification [1]. After the routine is done with DSR-
specific tasks, it passes the packet back to IP, which either 
transmits it to upper layer protocols like UDP or TCP (if the 
packet is destined for this host), or forwards it to the next 
hop in the network. 
 
Outgoing Packets – The virtual interface dsr0, defined by 
if_dsr.ko, accepts packets from the FreeBSD ip_output 

function just like any other interface, but uses its own 
mechanism to arrange for their delivery via the actual 
physical interface.  Packets are transferred to the DSR 
module on output by configuring the dsr0 interface with an 
IP address in an administratively defined DSR subnet.  This 
can be accomplished with a command such as: 
 

ifconfig dsr0  10.10.1.1/24 
 
This sets the IP address and subnet of dsr0 and implicitly 
configures the host’s routing tables such that any packet 
with a destination address in that subnet will be directed to 
dsr0. From there, dsr_output will be called to further 
process packets sent to dsr0 and forward them to the 
physical interface. 

The algorithm for the dsrd routing daemon is listed in 
Appendix A.  It handles the details of the route discovery 
and route maintenance operations, exchanging messages 
with both the kernel route cache and with corresponding 
routing daemons on other nodes.  
 
Appendix B shows the kernel module algorithm.  Three 
functions are of interest: manet_output, dsr_output and 
dsr_input. 
 
manet_output receives messages sent by dsrd. These 
messages are placed in a FIFO queue called 'mnq'.  
Messages are transmitted between dsrd and the kernel 
module using a facility similar to a standard UNIX routing 
socket. 
 
dsr_input processes incoming IP packets that carry a DSR 
option header.  The option header could either be a 
RouteRequest, AcknowledgmentRequest, Acknowledgment, 
or SourceRoute header. Once the pertinent information is 
retrieved from the packet, it is passed to the dsrd via the 
system function raw_input. 
 
 dsr_output receives packets from ip_output and retrieves 
messages from the FIFO queue. It inserts a DSR option 
header in packets that don't already have one (Figure 3), or 
forwards packets that do. 
 

5. FIELD TESTS 

The primary focus of this work was to determine the 
suitability of dynamically routed communications for 
surface mission environments.  To that end, several sets of 
tests were performed to determine the effectiveness of DSR 
for enabling routing between hosts that cannot communicate 
directly.  Throughput and latency measurements were also 
taken to determine the impact of DSR overhead.  The tests 
used four laptops running DSR-enhanced FreeBSD, 
communicating via Lucent Orinoco 802.11b interfaces.   
 
Three types of test environments were used: 
 
Firewall-based emulation – The ipfw firewall, built into the 
FreeBSD kernel, was configured on each laptop to block 
traffic from one or two of the other laptops’ MAC 
addresses.  This allowed the laptops to remain in RF 
communication range of each other in a laboratory 
environment, while still providing communication outages 
between selected pairs of nodes. 
 
Building exterior – The laptops were placed in locations on 
the outside of a building, as shown in Figure 4.  This 
arrangement allowed each laptop to see its immediate 
neighbor(s), but the building blocked communication with 
other laptops. 

IP Header 

IP Payload 

IP Header 

IP Payload 

DSR Header 
+ Options 

Figure 3 – IP Packet Following DSR Header Insertion 
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Mars-like terrain – The laptops were placed in rugged 
desert locations in Utah and Arizona, as well as a flat, rocky 
area in northern California.  These environments mimic the 
type of terrain that might be encountered during an actual 
mission.  In this case, communication outages may result 
from separation between nodes, obstructions, or in some 
cases destructive interference caused by multipath 
reflections.  Figure 5 shows a representative arrangement. 
 
Test Results 
 
The following results were observed: 
 
Route Discovery – dsrd records a timestamped log of all 
routing messages and route cache updates.  The standard 
ping utility was used to generate low-volume traffic to new  
destinations, and the dsrd logs and ping round trip times 
were observed.  The log data indicated that the average 
elapsed time from the issue of an RREQ to the receipt of an 
RREP was approximately one second.  However, as more 
hops were added between source and destination, the effects 
of transient packet losses between adjacent nodes during 
route discovery became more pronounced.  For example, 
packets traveling from node 1 to node 4 can be affected by 
losses between any of the three pairs of adjacent nodes.  In 
the worst case, successful route discovery in a four-node 
network took several tens of seconds.  Further study is 
presently underway to characterize this behavior and 
correlate it with fluctuations in observed RF signal strength. 
 
Multihop routing – DSR was able to successfully route 
packets between source and destination nodes separated by 
zero, one, or two intermediate nodes.  In cases where the 
source or destination node was mobile, the route cache entry 
was updated when either the node lost contact with its next-
hop neighbor or when the route expired. 
 
Latency/Jitter – Between two nodes that are within 
communication range of each other, the observed latency 
using DSR was not measurably greater than the latency 
without DSR at the same separation distance.  The latency 
measured during multiple-hop tests was more variable, since 
latency is affected by the completion time of the route 

discovery process as described above.  When a valid route 
was already in the cache, round trip times were observed to 
be approximately equal to the sum of the propagation delays 
between adjacent nodes, or 30-40 milliseconds in a typical 
experiment.  When route discovery was needed, the round 
trip times for the initial ping packets that triggered the 
discovery process were equal to the route discovery 
completion time. 
 
Throughput – Throughput tests were performed using Iperf 
[10].  The tests were primarily done using the UDP 
transport protocol.  This was done to gain a better 
understanding of the raw throughput of the protocol without 
the artifacts introduced by TCP’s response to the highly 
variable latency.  Tests were run from node 1 to each of 
nodes 2, 3, and 4.  Average throughput values are shown in 
Table 1.  These values compare with typical observed 
throughput of 1 Mbps between adjacent nodes without DSR. 
 As the table shows, DSR imposes a modest overhead on 
data transfers between adjacent nodes, while providing a 
useful data rate even to a node three hops away that is 
otherwise unreachable. 

 
Table 1 – Throughput Results 

 

6. CONCLUSIONS 

Our test results indicate that ad hoc routing protocols such 
as DSR have the potential to greatly increase the flexibility 
of surface communications.   By allowing surface nodes to 
relay data among themselves, the effective communication 
range of a surface-based workgroup can easily adapt to 
nodes moving about a work area in the presence of 
obstructions.  Our test results also suggest that more work is 
needed to make the route discovery process more robust in 
the presence of transient packet losses. 
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7. FUTURE WORK 

Our next goal is to get further experience with ad hoc 
routing in realistic mission environments.  To that end, we 
are planning to adapt our DSR implementation for use in a 
mission communications hardware testbed.  This testbed 
will include a channel path simulator that can replicate the 
exact RF environment that will be encountered on the lunar 
or Martian surface.  

APPENDIX A.  DSRD ALGORITHM  

initialize RouteCache  
initialize RouteRequestTable  
initialize DaemonLogfile  
m_sock = communication socket between dsrd and the kernel module  
s_sock = raw IP socket   
  
loopforever  1 
{  
 process RouteRequestTable  
 if m_sock bit is set   
 {     
  loopforever 2   
  {    
   read 'msg' from m_sock  
   switch(msg)  
   Case AddRoute:  
    /* the DSR module is passing us source route  
     information it got from a packet it received */.  
    Add that source route into RouteCache.  
    Break (leave loopforever2).  
      
   Case Got an Acknowledgment:  
    if MaintHoldOffTime has elapsed and this Ack  
    comes from a previous host we know OR if this is  
    coming from a different host than in the last   
    Ack Request we issued, send Ack Reply message to dsr  
    kernel module via m_sock socket.  
    Break.  
      
   Case Got RouteRequest:  
    store source route information into RouteCache.  
    Register the newly received Route Request in the  
    RouteRequestTable if it's not already in there.  
    Search the RouteCache for a route to the target node.  
    If a route is found, build a RouteReply packet and  
    send it back on s_sock socket.  
    If no route is found rebuild the Route Request packet,  
    decrement TTL and send it on s_sock socket.  
      
   Case Get Route:  
    /* we received a message from the dsr module saying   
    that it needs the route to a certain destination.*/  
    Search the RouteCache for a route to that destination.  
    If a route is found, send a Route message (RT) on  
    m_sock socket.  
    If no route is found, build a Route Request packet and  
    send it out via the s_sock socket.  
      
   Case Got RouteReply:  
    if our IP address is present in the RouteReply source  
    route, store in the RouteCache the path starting at  
    our IP address and on.  
      
  Write this newly acquired source-route on m_sock socket. It could be that 
the module needs it.  
      
   Case Got AcknowlegmentRequest:  

    build an IP packet containing a DSR header with  
    Acknowlegment field set.  
    Send that packet on s_socket.  
      
   Case Got RouteError:  
    /*We receive 3 IP address from the module. (E) is the node   
    That detected that (U) has become unreachable and that  
    (S) needs to be notified */  
    Update RouteCache based on that information. Remove  
    any source route with broken link E -> U.  
    Search for a route in RouteCache to destination S.  
   If route is found  
   Build SourceRoute+RouteError packet and send it on  
   s_sock socket.  
   Else  
   Build RouteRequest packet to target node S and send it on  
   S_sock socket.  
  }   
 }    
}     
 

APPENDIX B.  KERNEL MODULE ALGORITHM 

 loopforever     
{      
 read 'mnq' FIFO    
 switch(msg.type)   
 case RT:     
  /* This message contains source route to a target node*/  
  look at all the outstanding packets in the SendBuffer and   
  send those that needs to go to that target by using this source  
   route information.  
  Put a copy of every packets sent in the MaintenanceBuffer.  
  Break    
      
      
 case ACKREP:    
  /* we have received an acknowledgment from a host 1-hop away*/  
  Remove every packet in the MaintenanceBuffer that match this  
  acknowledgment information (i.e dest IP addresses are the same).  
  Break    
}      
      
whileloop on MaintenanceBuffer  
{      
 if a packet has been held for more than MaintainHoldOffTime &&  
 if it has been sent more than MaxMaintRexmt  
  Issue RouteError.   
 Else if a packet retransmit count < MaxMaintRexmt  
  resend the packet out.  
  Increment the packet's retransmit counter.  
}      
switch(IP protocol)    
{      
 case IPPROTO_DSR:   
      
 switch(dsr option)   
 {     
  case SourceRoute(SRCRT):  
   if our IP address is listed in the source route path  
    forward packet.  
    Put a copy of the packet in the MaintenanceBuffer.  
   Else   
    discard packet.  
  Break    
      
  case Acknowledgment (ACK):  
  case AcknowledgmentReply (ACKREQ):  
   send packet out if we are the source. 
  Break    
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  case RouteRequest (RREQ):  
   set destination address to IP limited broadcast address =  
   255.255.255.255  
   send packet out.  
  Break.    
 }     
J      
 case ICMP or TCP or UDP or IP:  
  if we don't know the route to the destination,  
    issue a GetRoute (GETRT) message to the RoutingDaemon . 
   Put packet in the SendBuffer.  
  Else    
   build a SourceRoute and AcknowledgmentRequest  
   options in a DSR header.  
   Insert the DSR header into the packet after the IP header.  
   Put a copy of the packet on the MaintenanceBuffer . 
   Send packet out.  
      
 Break.     
)  
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